AKUMULATORY LI-LION ŁADOWANIE I KONSERWACJA

Cześć
Jak dbać o akumulatory litowo jonowe.
W naszym sklepie sprzedajemy elektronarzędzia akumulatorowe z akumulatorami niklowo kadmowymi i litowo jonowymi, przy czym te ostatnie, jakkolwiek znacznie droższe stanowią coraz większy odsetek sprzedawanych. Charakterystyka ładowanie - rozładowanie w obu tych typach w dużej mierze się różni i dlatego zdecydowałem napisać parę słów na ten temat. Nie ma tu rzecz jasna znaczenia czy jest to akumulator Makita czy akumulator Bosch lub innego producenta.
Pierwsza sprawa to rozładowanie do zera. W przypadku aku. litowo kadmowych taka operacja pozwalała na wydłużenie żywotności akumulatora i był rekomendowany przez producentów elektronarzędzi. Kompletnie inaczej jest w wypadku aku. litowo jonowych, pod żadnym pozorem nie powinno się je rozładowywać do zera i przechowywać w takim stanie.
Następna sprawa doładowanie baterii. W przypadku starych aku. LiCd wskazane było ładowanie baterii tylko w przypadku ich całkowitego rozładowanie, procedura doładowania nie była zalecana. W przypadku li-ion jest zupełnie na odwrót. Jeżeli wkrętarka słabnie to wymieniamy na nowy akumulator a wyczerpany od razu wsadzamy do ładowarki. Akumulator Bosch 10.8V lub inny li-lon wymaga częstego ładowania, nawet, jeżeli rozładujemy je w 20%-40%. Pamiętajmy o tym to bardzo ważne!!

akumulator bosch 10.8 v
I dobrnęlibyśmy do kolejnego punktu a mianowicie przetrzymywania akumulatorów Li-ion. O ile aku. litowo kadmowe przechowywane przez dłuższy czas rozładowały się samoczynnie o tyle litowo-jonowe można magazynować przez kilka miesięcy, ale pod warunkiem, że są naładowanie w 100%. Jeśli zostawimy go rozładowanego na dłuższy czas to w dużej mierze spadnie jego żywotność lub nastąpi nieodwracalna awaria i będzie nadawał się do wyrzucenia.
I jeszcze kilka uwag. Akumulatory przechowujemy w jak najniższej temperaturze, trzeba unikać miejsc nagrzanych, nasłonecznionych.
Niektórzy producenci jak np. Makita w instrukcji zakazuje ponownie ładować naładowany w 100% akumulator, nie wiem z jakiego powodu ale warto poczytać instrukcje.
To tyle, powyższe informacje są uniwersalne i dotyczą wszystkich typów odbiorników komórek, laptopów i innych. A teraz proponuję odszukać wszystkie aku. li-lon i je czym prędzej naładować.
Pozdrawiam Rafał

Polska cyna do lutowania

Firma Cynel działa na polskim rynku od ponad 25 lat. Produkuje wysokiej, jakości stopy lutownicze i pasty lutownicze.
Stosuje w tym celu najczystsze dostępne surowce oraz wyjątkową na skalę światową procedurę wysokociśnieniowej obróbki stopów metali. Na uwagę zasługuje fakt, że technika ta została zaprojektowana w Polsce - w Polskiej Akademii Nauk - i jest z powodzeniem handlowo wykorzystywana przez polskie przedsiębiorstwo. Jest to wzorcowy przykład współpracy nauki i biznesu.
Jakość spoiw lutowniczych wielokrotnie została doceniona i nagrodzona przez klientów.
Najbardziej popularne i znane spoiwa lutownicze to:
Spoiwo lutownicze S-Sn97Cu3 jest stopem wyprodukowanym w pierwszym wytopie cyny i miedzi zgodnie z PN EN 29453-24. Przeznaczony do lutowania w wyższych temperaturach, oraz przy lutowaniu płomieniowym instalacji miedzianych, oraz w tyglach lutowniczych.
Spoiwo lutownicze S-Sn99Cu1 to stop wyprodukowany w pierwszym wytopie cyny i miedzi zgodnie z PN EN 29453-24. Popularny lut miękki, przeznaczony, jako nisko kosztowy zamiennik dla spoiw cynowo ołowiowych.
Spoiwo lutownicze S-Sn60Pb40 wyprodukowane w pierwszym wytopie cyny i ołowiu zgodnie z normą PN EN 29453:2000, w ciągłym procesie odlewania bez dostępu powietrza, następnie wyciskany, co zapewnia eliminację występowania tlenków.
Spoiwo lutownicze S-Sn60Pb40 ma zastosowanie głównie w technice elektroinstalacyjnej, do wytwarzania typowych urządzeń i elementów elektronicznych, elektrotechnice oraz do lutowania elementów z pokryciami cynowymi, cynowo-ołowiowymi, kadmowymi, cynkowymi i srebrnymi.

W ofercie firmy Cynel znajduje się także okazała i zróżnicowana gama topników wspierających procesy lutowania w różnych środowiskach technologicznych. Należą:
Pasta Cynel-1 jest wytwarzana na bazie kalafonii z aktywatorami organicznymi. Zawiera aktywny topnik 1.1.2.C wg PN EN 29454. Doskonale nadaje się do lutowania powierzchni cynowanych, miedzianych, mosiężnych, niklowanych, pobielania końcówek przewodów itp. W uzasadnionych przypadkach pozostałości pasty można usunąć terpentyną.
Topnik lutowniczy Cynel-Cu ma postać żelu, zawiera mieszaninę soli organicznych (wg PN EN 29454 oznaczenie 3.1.1).
Zastosowanie Topnika Cynel Cu. Topnik używany przy lutowaniu miedzianych instalacji hydraulicznych. Zadaniem jego jest utrzymać beztlenowo powierzchnię rury miedzianej i kształtki podczas ogrzewania do temperatury roboczej, aby zapewnić w ten sposób zwilżenie rury stopem lutowniczym. Topnik Cynel-Cu jest rozpuszczalny w wodzie, co upraszcza ścieranie resztek topnika po lutowaniu.
Sposób użycia Topnika Cynel CU
Nawierzchnie rur i kształtek oczyścić do czystego metalu niemetalicznym czyścikiem.
Po oczyszczeniu usunąć powstały pył.
Na oczyszczoną końcówkę rury nanosić małą warstwę topnika Cynel-Cu tak, aby pokrył całą przeznaczoną do lutowania nawierzchnię.
Koniec rury wsadzić w kształtkę aż do oporu.
Rurę i kształtkę podgrzać równomiernie aż do uzyskania temperatury roboczej na całej żądanej powierzchni. Płomień palnika trzymać skośnie do rury w kierunku kształtki.
Pozostałości topnika przemyć wodą a wnętrze instalacji przed użyciem podobnie przepłukać wodą.

Obróbka skrawaniem 3/3

Część 3.
W ostatnim rozdziale zaprezentuję parę rad przy obróbce poszczególnych materiałów.
Stale konstrukcyjne są najliczniejszą grupą materiałów obrabianych w warunkach warsztatowych. Na ogół nie stanowią problemu, należy pamiętać o:
- Smarowaniu i chłodzeniu podczas obróbki.
- Jeżeli wiercimy głębokie otwory i mamy wiertło długie do metalu to w żadnym razie nie zaczynajmy takim wiercić, najpierw nawiercamy otwór wiertłem krótrzym np. NWKa a potem długim, zwłaszcza przy wiertłach o małych średnicach – 2,5mm-4,5mm. I jeszcze trzeba miejsce wiercenia napunktować – młotek i punktak albo punktak automatyczny.
Zawsze lepiej wiercić z nieco większym posuwem i małą prędkością niż odwrotnie.
Im materiał twardszy to szybkość skrawania maleje. Na ten przykład stal węglowa między 500-1000MPa stosunek prędkości skrawania wynosi 10-6, czyli prawie połowe mniej.
Jeżeli mamy tokarkę czy frezarkę to lepiej zajrzeć do tabel.
Stale nierdzewne, skrawalność zależy od wielkości dodatków stopowych i rodzaju obróbki. Im więcej dodatków tym gorsza skrawalność. Najlepiej skrawalne są stale ferrytyczne i martenzytyczne. Tak jak pisałem w rozdziale posiadają tendencję do hartowania przy zgniocie i do przyklejania się do powierzchni natarcia. Tworzą wtedy taki garb za krawędzią skrawania, przez co spowalniają dalszą obróbkę. Narzędzie nagrzewa się i traci swoje cechy. Przy wierceniu w tych stalach bardzo istotne są parametry skrawania, czyli nader duży nacisk i mała prędkość skrawania nie odwrotnie. Frez czy wiertło powinien się ślizgać bo wówczas się tępi. Ważne jest chłodzenie, bo stale inox słabo odprowadzają ciepło i oczywiście adekwatne ostre narzędzie, w przypadku wiercenia są to wiertła kobaltowe INOX. Oczywiście są takie stale nierdzewne np. duplex, w których należy zapomnieć o wierceniu czymś innym niż wiertła węglikowe z rdzeniem i chłodzeniem no i bez wątpliwości na precyzyjnych wiertarkach stołowych albo CNC.
pozostałe materiały, czyli żeliwa, żeliwa ciągliwe mają znakomite skrawalności i obrabia je się na sucho. Również miedź i jej stopy, czyli mosiądze i brązy. Jedynie aluminium ma sporą tendencję do klejenia się, przez co wymaga znacznie ostrzejszych narzędzi i większych prędkości obrotowych.

Rozkład temperatur podczas skrawania 2/3

Część 2 -obróbka skrawaniem
Teraz parę terminów:- opory skrawania, to znaczy siła po przyłożeniu której nóż tokarski może się zagłębić w materiał obrabiany.
Największej siły potrzebują materiały z grupy 5 i 6. Dalej 1 i 2, i tu mała uwaga, bo choć stal nierdzewna jest w miarę miękka to ma tendencję do hartowania się w strefie zgniotu a powstały wiór nadal ma tendencję do sczepiania się z przedmiotem obrabianym. Rada: wiertło kobaltowe do nierdzewki jak zaczyna piszczeć to oznacza, że już nie skrawa i trzeba je przeostrzyć.
I ostatnia grupa o najniższym oporze skrawania to 3 i 4.
Dalej napiszę o temperaturach powstających w ciągu skrawania na styku narzędzie - przedmiot. Najmocniej narażonym miejscem w narzędziu na nagrzanie i zużywanie jest oczywiście krawędź skrawająca, stąd chłodzenie czyli system podawania chłodziwa lub smarowanie powinno być stale brane pod uwagę. Nawet jak wiercimy jeden otwór i mamy wiertło do stali umocowane w uchwycie to można je zanurzyć w oleju. Tak wygląda analiza temperatur w trakcie skrawania przy zachowaniu zbliżonych parametrów.

Z obrazka widać, dlaczego np. mosiądz czy żeliwo jest łatwe do skrawania a stal nierdzewna czy hartowana nie.
I na koniec nieco o skrawalności materiałów. Na skrawalność ma wpływ sporo czynników, część z nich opisałem powyżej. Zalicza się jeszcze do nich min.:
- Geometria ostrza i materiał, z jakiego jest wykonane narzędzie( wiertła do stali, wiertła HSS NWKa, noże tokarskie czy frezy palcowe).
- Parametry skrawania, czyli siła nacisku - posuwu, prędkość skrawania.
- Sposób i intensywność chłodzenia (ciągłe czy jednorazowe).
- Sposób mocowania materiału i narzędzia (uchwyt wiertarski, imadło maszynowe).
A teraz ciekawe spostrzeżenie, taki paradoks: dla jednostki, która wykonuje robotę(wiercenie czy toczenie) pożądane są stale o małej wytrzymałości, małej ciągliwości i małej ścierności. Natomiast dla użytkownika wyrobu gotowego najlepszym materiałem jest taki, który wykazuje dużą wytrzymałość, wysoką ciągliwość i niewielką ścieralność.

webhostreviewclub.com

Sklep internetowy narzędzia warsztatowe